Example 1：Solve the following LPP by using simplex method；

$$
\operatorname{Max} Z=6 x_{1}+4 x_{2}
$$

Subject to

$$
\begin{aligned}
x_{1}+2 x_{2} & \leq 720 \\
2 x_{1}+x_{2} & \leq 780 \\
x_{1} & \leq 320
\end{aligned}
$$

Solution：

Step 1：Convert the Following LPP into Standard Form

$$
\operatorname{Max} Z=6 x_{1}+4 x_{2}+0 S_{1}+0 S_{2}+0 S_{3}
$$

Subject to

$$
\begin{array}{r}
x_{1}+2 x_{2}+S_{1}= \\
7202 x_{1}+x_{2}+S_{2} \\
=780 \\
x_{1}+S_{3}=320
\end{array}
$$

Step 2：Initial Basic Feasible Solution
$x_{1}=0$ and $x_{2}=0$ in the above equation then we have $S_{1}=720$ ， $S_{2}=780$ and $S_{3}=320$

Table 1：Initial Solution

		$\xrightarrow{C_{\mathrm{j}}}$			4	0	0	0	
$C_{\text {B }}$	B	$\begin{aligned} & b(= \\ & \left.x_{\mathrm{B}}\right) \end{aligned}$			x_{2}		S_{2}	S_{3}	Min．Ratio
0	S_{1}	720	（1）	（1）			0	0	${ }_{1}^{1}=720$
0	S_{2}	780	2	2	1	0	1	0	$\stackrel{1}{2}_{L}^{2}=390$
0	S_{3}	320		1		0	0	1	$⿻ 丷 木_{1}=320 \rightarrow$
$\begin{gathered} Z= \\ 0 \end{gathered}$		$Z_{j}=$		0	0	0	0	0	
		$\begin{gathered} \hline C_{\mathrm{j}}- \\ Z_{\mathrm{j}} \end{gathered}$			4	0		0	

Step 3: Perform the Optimality Test

Since all $C_{j}-Z_{j} \geq 0(j=1,2)$, the current solution is not optimal. Variable x_{1} is chosen to enter into the basis as $C_{1}-Z_{1}=6$ is the largest positive number in the x_{1} column, where all elements are positive. This means that for every unit of variable x_{1}, the objective function will increase in value by 6 . The x_{1} column is the key column.

Step 4: Determine the Variable to Leave the Basis

The variable to leave the basis is determined by dividing the value in the $x_{B^{-}}$(constant) column by their corresponding elements in the key column as shown in Table 1. Since the exchange ratio, 320 is minimum in row 3, the basic variable S_{3} is chosen to leave the solution basis.

Iteration 1: Since the key element enclosed in the circle in Table 1 is 1 , this row remain unchanged. The new values of the elements in the remaining rows for the new Table is obtained by performing the following elementary row operations on all rows so that all elements except the key element 1 in the key column are zero.

$$
\begin{aligned}
& R_{3}(\text { new }) \rightarrow \frac{R_{3}(\text { old })}{1(\text { keyelement })}=(320,1,0,0,0,1) \\
& R_{2}(\text { new }) \rightarrow R_{2}(\text { old })-2 R_{3}(\text { new }) \\
& R_{2}(\text { new }) \rightarrow(780,2,1,0,1,0)-2(320,1,0,0,0,1)=(140,0,1,0,1,-2) \\
& R_{1}(\text { new }) \rightarrow R_{1}(\text { old })-1 R_{3}(\text { new }) \\
& R_{1}(\text { new }) \rightarrow(720,1,2,1,0,0)-1(320,1,0,0,0,1)=(400,0,2,1,0,-1)
\end{aligned}
$$

Then, the new improved solution is given in 2 below;
An improved basic feasible solution can be read from Table 2 as: $x_{1}=$ $320, S_{2}=140, S_{3}=400$ and $x_{2}=0$. The improved value of objective function is $\mathrm{Z}=1920$.

Once again, calculate values of $C_{j}-Z_{j}$ in the same manner as we have done to get the improved solution in Table 2 to see whether the solution is optimal or not. Since $C_{2}-Z_{2}>0$, the current solution is not optimal.

Table 4.2: Improved Solution

Iteration 2: Repeats steps 3 to 4 . Table 3 is obtained by performing following row operations to enter x_{2} into the basis and to drive out S_{2} from the basis.

$$
R_{2}(\text { new }) \rightarrow \frac{R_{2}(\text { old })}{\begin{array}{l}
1(\text { key } \\
\text { element })
\end{array}}=(140,0,1,0,1,-2)
$$

$$
\begin{array}{r}
R_{1}(\text { new }) \rightarrow R_{1}(\text { old })-2 R_{2}(\text { new }) \\
R_{1}(\text { new }) \rightarrow(400,0,2,1,0,-1)-2(140,0,1,0,1,-2)=(120,0,0,1,-2,3) \\
R_{3}(\text { new }) \rightarrow R_{3}(\text { old })-0 R_{2}(\text { new }) \\
R_{3}(\text { new }) \rightarrow(320,1,0,0,0,1)-0(140,0,1,0,1,-2)=(320,1,0,0,0,1)
\end{array}
$$

Then, the improved solution for iteration 2 is given in Table 3 below;
Table 3: Improved Solution

		C_{j} $-\rightarrow$	6	4	0	0	0	
C_{B}	B	$b(=$ $\left.x_{\mathrm{B}}\right)$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	Min.Ratio
0	S_{1}	120	0	0	1	-2	3	$0^{2}=40 \rightarrow$
4	x_{2}	140	0	1	0	1	-2	$\frac{3}{3}$
6	x_{1}	320	1	0	0	0	1	$32=320$
						0		
$Z=$		$Z_{\mathrm{j}}=$	6	4	0	4	-2	
2480								
		$C_{\mathrm{j}}-$	0	0	0	-4	2	
Z_{j}								

Iteration 3: Repeats steps 3 to 4 . Table 4 is obtained by performing following row operations to enter S_{3} into the basis and to drive out S_{1} from the basis.

$$
R_{1}(\text { new }) \rightarrow \frac{R_{1}(\text { old })}{3(\text { keyelement })}=(40,0,0,1 / 3,-2 / 3,1)
$$

$$
\begin{array}{r}
R_{2}(\text { new }) \rightarrow R_{2}(\text { old })+2 R_{1}(\text { new }) \\
R_{2}(\text { new }) \rightarrow(140,0,1,0,1,-2)+2(40,0,0,1 / 3,-2 / 3,1)=(220,0,1,2 / 3,-1 / 3,0) \\
R_{3}(\text { new }) \rightarrow R_{3}(\text { old })-1 R_{1}(\text { new }) \\
R_{3}(\text { new }) \rightarrow(320,1,0,0,0,1)-1(40,0,0,1 / 3,-2 / 3,1)=(280,1,0,-1 / 3,2 / 3,0)
\end{array}
$$

Then, the improved solution for iteration 2 is given in Table 4 below;
Table 4: Optimal Solution

		C_{j} $-\rightarrow$	6	4	0	0	0	
C_{B}	B	$b(=$ $\left.x_{\mathrm{B}}\right)$	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	Min.Ratio
0	S_{3}	40	0	0	$1 / 3$	-	1	
4	x_{2}	220	0	1	$2 / 3$	-	0	
6	x_{1}	280	1	0	-	$2 / 3$	0	
$Z=$		$Z_{\mathrm{j}}=$	6	4	$2 / 3$	$8 / 3$	0	
2560								
		$C_{\mathrm{j}}-$	0	0	-	-	0	

Since all $C_{j}-Z_{j} \leq 0$ corresponding to non - basic variables columns, the current solution cannot be improved further. This means that the current basic feasible solution is also the optimal solution. Thus, $x_{1}=280, x_{2}=$ 220 and the value of objective function is $\mathrm{Z}=2560$.

Example 2: Use the simplex method to solve following LP problem.

$$
\operatorname{Max} Z=6 x_{1}+17 x_{2}+10 x_{3}
$$

Subject to

$$
\begin{array}{r}
x_{1}+x_{2}+4 x_{3} \leq \\
20002 x_{1}+x_{2}+x_{3} \\
\leq 3600 x_{1}+2 x_{2}+ \\
2 x_{3} \leq 2400 \\
x_{1} \leq 30
\end{array}
$$

and

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

Solution:

Convert the Following LPP into Standard Form

$$
\operatorname{Max} Z=6 x_{1}+17 x_{2}+10 x_{3}+0 S_{1}+0 S_{2}+0 S_{3}+0 S_{4}
$$

Subject to

$$
\begin{aligned}
& x_{1}+x_{2}+4 x_{3}+S_{1}= \\
& 20002 x_{1}+x_{2}+x_{3}+S_{2} \\
& =3600 x_{1}+2 x_{2}+2 x_{3}+ \\
& S_{3}=2400 \\
& \quad x_{1}+S_{4}=30
\end{aligned}
$$

and

$$
x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, S_{3}, S_{4} \geq 0
$$

Initial Basic Feasible Solution
An initial basic feasible solution is obtained by setting $x_{1}=x_{2}=x_{3}$ $=0$. Thus, the initial solution is: $S_{1}=2000, S_{2}=3600, S_{3}=2400, S_{4}$ $=30$ and $\operatorname{Max} \mathrm{Z}=0$. The solution can also be read from the initial simplex Table 1

Table 1: Initial Solution

Perform the Optimality Test

Since all $C_{j}-Z_{j} \geq 0$, the current solution is not optimal. Variable x_{2} is chosen to enter into the basis as $C_{2}-Z_{2}=17$ is the largest positive number in the x_{2} column. We apply the following row operations to get a new improved solution and removing S_{3} from the basis.

$$
\begin{gathered}
\xrightarrow{R_{3}(\text { new })} \frac{R_{3}(\text { old })}{2(\text { key element })}=(1200,1 / 2,0,0,0,1,-1 / 2,0) \\
R_{1}(\text { new }) \rightarrow R_{1}(\text { old })-R_{3}(\text { new })=(800,1 / 2,0,3,1,0,-1 / 2,0) \\
R_{2}(\text { new }) \rightarrow R_{2}(\text { old })-R_{3}(\text { new })=(2400,3 / 2,0,0,0,1,-1 / 2,0) \\
R_{4}(\text { new }) \rightarrow R_{4}(\text { old })=(30,1,0,0,0,0,0,1)
\end{gathered}
$$

The new solution is shown in Table 2 below

Table 2: Improved Solution

		$\xrightarrow{C_{\mathrm{j}}}$			$\begin{aligned} & 1 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	0	0	0			
$C_{\text {B }}$	B	$\begin{aligned} & \hline b(= \\ & \left.x_{\mathrm{B}}\right) \end{aligned}$		1	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	S	${ }_{4}$	Min.Ratio
0	S_{1}	800		$1 / 2$	0	3	1	0	$-1 / 2$	0		$\begin{aligned} & 000=1600 \\ & 1 / 420 \end{aligned}$
0	S_{2}	2400			0	0	0	1	$-1 / 2$	0		$\begin{aligned} & 2400=1600 \\ & 3500 \end{aligned}$
17	x_{2}	1200		2	1	1	0	0	$1 / 2$	0		$\begin{aligned} & 1200=2400 \\ & 30^{2}=2 \end{aligned}$
0	S_{4}	30			0	0	0	0	0			$1=30 \rightarrow$
$\begin{gathered} Z=20, \\ 000 \\ \hline \end{gathered}$		$Z_{\mathrm{j}}=$			$\begin{aligned} & \hline 1 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 7 \\ & \hline \end{aligned}$	0	0	$17 / 2$			
		$C_{\mathrm{j}}-$ Z_{j}	15	$5 /$	0	-7	0	0	$17 / 2$			

The solution shown in Table 2 is not optimal because $C_{1}-Z_{1}=15 / 2$ which is positive in x_{1} column. Thus, applying the following row operations to get new improved solution by entering variable x_{1} into the basis and removing the variable S_{4} from the basis.

$$
\begin{aligned}
& R_{4}(\text { new }) \rightarrow \frac{R_{4}(\text { old })}{1(\text { key element })}=(30,1,0,0,0,0,0,1) \\
& R_{1}(\text { new }) \rightarrow R_{1}(\text { old })-(1 / 2) R_{4}(\text { new })=(785,0,0,3,1,0,-1 / 2,-1 / 2) \\
& R_{2}(\text { new }) \rightarrow R_{2}(\text { old })-(3 / 2) R_{4}(\text { new })=(2355,0,0,0,0,1,-1 / 2,-3 / 2) \\
& R_{3}(\text { new }) \rightarrow R_{3}(\text { old })-(1 / 2) R_{4}(\text { new })=(1185,0,1,1,0,0,1 / 2,-1 / 2)
\end{aligned}
$$

Then, the improved solution for this iteration is given in Table 3 below;

Table 3: Optimal Solution

		C_{j} $-\longrightarrow$	6	1	1	0	0	0	0
7	0								
C_{B}	B	$b(=$ $\left.x_{\mathrm{B}}\right)$	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	S_{4}
0	S_{1}	785	0	0	3	1	0	$-1 / 2$	$-1 / 2$
0	S_{2}	2355	0	0	0	0	1	$-1 / 2$	$-3 / 2$
17	x_{2}	1185	0	1	1	0	0	$1 / 2$	$-1 / 2$
16	x_{1}	30	1	0	0	0	0	0	1
$Z=20$, 625		$Z_{\mathrm{j}}=$	16	1	1	0	0	$17 / 2$	$15 / 2$
				7	7				

Since all $C_{j}-Z_{j} \leq 0$ corresponding to non - basic variables columns, the current solution cannot be improved further. This means that the current basic feasible solution is also the optimal solution. Thus, $x_{1}=30, x_{2}=1,185$ and $x_{3}=0$ to obtain the maximum value of $\mathrm{Z}=20,625$.

